Design of a Gd-DOTA-Phthalocyanine Conjugate Combining MRI Contrast Imaging and Photosensitization Properties as a Potential Molecular Theranostic

Duygu Aydin Tekdas1, Ruslan Garifullin2, Berna Şentürk2, Yunus Zorlu1, Umut Gundogdu3, Ergin Atalar3,4, Ayse B. Tekinay2, Alexander A. Chernonosov5, Yusuf Yerli6, Fabienne Dumoulin1, Mustafa O. Guler2, Vefa Ahlsen1 and Ayse Gül Gurek*1

1Department of Chemistry, Gebze Institute of Technology, Kocaeli, Turkey
2Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
3National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
4Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
5Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
6Physics Department, Arts and Science Faculty, Yildiz Technical University, Istanbul, Turkey

Received 27 May 2014, accepted 6 August 2014, DOI: 10.1111/php.12332

ABSTRACT

The design and synthesis of a phthalocyanine – Gd-DOTA conjugate is presented to open the way to novel molecular theranostics, combining the properties of MRI contrast imaging with photodynamic therapy. The rational design of the conjugate integrates isomeric purity of the phthalocyanine core substitution, suitable biocompatibility with the use of polyoxo water-solubilizing substituents, and a convergent synthetic strategy ended by the use of click chemistry to graft the Gd-DOTA moiety to the phthalocyanine. Photophysical and photochemical properties, contrast imaging experiments and preliminary in vitro investigations proved that such a combination is relevant and lead to a new type of potential theranostic agent.

INTRODUCTION

Theranostics is one of the promising ways to personalized medicine, more especially against cancer, combining diagnostic and therapeutic effects (1,2). Most of theranostics are nanoobjects as they allow easily combining the different features required (3), when molecular theranostics are rather rare due to the difficulty of combining several properties and effects in a unique chemical derivative. Since the premises of modern photodynamic therapy, the drawbacks of the first-generation of photosensitizers, mainly due to their polymeric poorly characterizable structures have been overcome by the development of second-generation of photosensitizers, consisting mainly of molecular tetrapyroles of well-defined structures and tailorable properties (4). The third generation of photosensitizers combines imaging agents and photosensitizers to have the patient benefiting from a “see and treat” process (5), and theranostics quickly took place in the photodynamic therapy field. Among the different types of photosensitizers, porphyrins (6) and phthalocyanines (7,8) are particularly employed. Zn(II) phthalocyanines offer the advantage of its near-infra red absorption, centered at 700 nm and adjustable by playing on the substitution pattern (9,10). Near-infrared red absorption has the double advantage of a deeper penetration of the light into tissues, and to fit the biological therapeutic window a biological components does not absorb at these wavelengths. Besides, phthalocyanines are extremely stable, compared for example to chlorins absorbing at similar wavelengths but less photostable (11). A wide range of nanoparticles has been reported (12–15), when only a few examples of molecular theranostics for PDT are described (16,17). In most cases, imaging properties are fluorescence-based, phthalocyanines being intrinsically good fluorescent probes (18). Nevertheless, labeling of porphyrins and phthalocyanines by radioelements (19), such as18F- radiolabeling for PET imaging is reported (20).

Nowadays, computer tomography is the most common imaging technique, PET being the most common for tumors. Contrast magnetic resonance imaging (MRI) is an imaging modality accessible in radiological practice, particularly for the identification and characterization of delicate tissue pathologies, especially solid tumors in cancer, as a non-invasive diagnostic imaging technique utilized within clinical and biomedical examination. The affectability and specificity, and consequently differentiation of MR images, might be further upgraded by the utilization of responsive contrast agents. The majority of MRI contrast agents are paramagnetic complexes made of cyclen-based chelates of lanthanide ions, generally gadolinium (Gd3+)–based chelates (21–23). A wide sort of paramagnetic chelates based on Gd(III), have been contrived as T1 contrast agents (positive contrast agents) to create a large magnetic moment. Such complexes are known to exhibit nephrotoxic effects (24). This prompts researchers to direct their efforts toward new imaging techniques. These effects are still balanced by their powerful imaging properties. At present, Gd-based contrast agents have been employed in >40% of MRI scans, acting an important role in contrast enhanced MRI studies (25–28). Diethylene triamine pentaacetic acid Gd complexes are the most widely used ones, as is the commercially

*Corresponding author email: gurek@gyte.edu.tr (Ayse Gül Gurek)

© 2014 The American Society of Photobiology
available Magnesivit®, Omnisscar® being a bismethylamide substituted diethylene triamine pentaacetic acid Gd complex (29). The efficacy of these contrast agents depends on the interchanging of water between the bulk solvent and the coordination sphere. The swapping scale of bound water relies upon nature of the ligand and the metal ion. Complexes made with the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) exhibit the fastest rate of bound water.

For the last several years, our laboratory has focused its research on developing NIR absorbing photosensitizers with a phthalocyanine core (30–34), with enhanced efficacy thanks to various strategies: targeting (35), dual antivascular action (36,37), nanoparticles functionalization (38,39). We then wished to explore the possibility to produce PDT sensitizers having MRI contrast imaging properties, to enlarge the range of available techniques for dual imaging and photosensitization, and obtain a novel type of theranostic agent. We selected a DOTA unit complexing a gadolinium atom as the MRI contrast agent, coupled to the phthalocyanine-GdDOTA conjugate reported so far includes 68 Ga to be used as PET/fluorescent dual imaging probe (40).

In this paper, we report the design and the synthesis as well as the theranostic dual photodynamic and imaging potential of the phthalocyanine-GdDOTA conjugate 8.

MATERIALS AND METHODS

General methods. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded by Varian 500 MHz spectrometer at 500 and 125 MHz, respectively. Unless otherwise stated, chemical shifts are reported in ppm and referenced to residual solvent peaks (CDCl3: 7.26 ppm for 1H and 77.16 ppm for 13C). Normal resolution mass spectra were recorded on a Perkin Elmer 100 FTIR spectrometer. All solvents and excess of thionyl chloride were evaporated under reduced pressure.

Syntheses. Synthesis of 2-(3-azidopropyl)-3-(3,4-dicyanophenylthio) propane-4,4-dimethyl-1-phenylphthalonitrile (4). 4-(Carboxylethylsulfanyl) phthalonitrile 2 (300 mg, 1.3 mmol) was dissolved in anhydrous THF (5 mL) under argon atmosphere, then thionyl chloride (1.6 g, 13.3 mmol) in anhydrous toluene (5 mL) was added and the solution was refluxed for 3 h. Thereafter, solution and excess of thionyl chloride were evaporated under reduced pressure. Brown oil was dissolved in anhydrous THF (5 mL) and 1-azido-3-aminopropane 3 (390 mg, 3.9 mmol) as a free base in anhydrous THF (5 mL) was added slowly drop by drop, then the mixture was refluxed for 3 h. The crude product was concentrated under reduced pressure, suspended in water and extracted three times with ethyl acetate. Organic layer was then extracted with brine, dried over anhydrous Na2SO4 and purified by column chromatography on silica with dichloromethane/ethyl acetate 100:1 as eluent followed by recrystallization from ethanol yielding yellowish solid (280 mg, 68%). FT-IR (cm–1) 3229 (NH3), 3093 (ArH), 2929-2850 (CH3), 2250 (CN), 2083 (N=), 1631 (CO), 1477 (CN). 1H NMR (500 MHz, CDCl3, δ ppm): 1.75 (p, 2H, CH2), 2.02 (t, 2H, N-CH2), 3.30 (m, 6H, SCH2, CH2N3), 5.9 (s, N=), 7.51 (d, 1H, ArCH), 7.53 (s, CH2), 7.6 (d, 1H, ArH). 13C NMR (125 MHz, CDCl3, δ ppm): 27.38 (CH2N3), 34.97 (SCH2), 37.46 (SCH2CH2), 43.98 (CH2N3), 111.07 (CN), 115.10 (Ar), 115.53 (CN), 126.87 (CH2). MS (EI) m/z [M+Na]+ 317.09; m/z calculated for C16H12N3O5S [M+Na]+ 314.37.

Synthesis of 2-(N-(3-azidopropyl)-(3-thiopropylamide)-9,10,16,17,23,24-(1-mercapto-4,7,10-trioxaundecane) Zn(II) phthalocyanine (6). N-(3-azidopropyl)-3-(3,4-dicyanophenylthio) propane 4 (50 mg, 0.16 mmol) and 4,5-bis-(4,7,10-trioxaundecane-1-sulfanyl) phthalonitrile 1 (670 mg, 1.44 mmol) were dissolved in anhydrous dimethylformamide (2 mL) under argon atmosphere and stirred for 20 min. Then ZnOAc2 (150 mg, 0.80 mmol) was added and solution was refluxed for further 1 h at 120°C, then the reaction was cooled down. The reaction mixture was evaporated under reduced pressure. A crude green mixture of symmetrical derivative 6 was purified by column chromatography over bio-beads using CH3Cl as eluent, then the two derivatives were separated on preparative silica gel TLC using CH3Cl:CH3OH:CH3ONa (10:1) as solvent gave the desired product. Yield: 45% (24 mg). FT-IR (cm–1) 3088 (NH), 2922, 2857 (CH2), 1641 (amide II). 1H NMR (500 MHz, DMF-d7, δ ppm): 1.28 (s, 16H, N(CH2)4CH3), 2.35-2.39 (m, 18H, OCH2), 2.93-2.96 (m, 12H, SCH2CH2), 4.14-4.19 (m, 12H, SCH2CH2), 8.22 (d, 4H, ArH). 13C NMR (125 MHz, DMF-d7, δ ppm): 29.46 (CH2), 33.23 (CH3), 33.59 (CH3), 33.75 (CH3), 35.11 (CH2), 35.45 (CH2), 36.45 (CH2), 48.98, 58C (CH2), 59.04 (OCH2), 69.51 (CH2), 69.69 (CH2), 70.25 (CH2), 70.43 (CH2), 70.51 (CH2), 71.79 (CH2). MS (EI) m/z 135.47 (Ar), 135.66 (Ar), 136.17 (Ar), 137.76 (Ar), 138.45 (Ar), 139.17 (Ar), 152.90 (Ar), 170.06 (CO). HRMS (MALDI-TOF) m/z [M+H]+ calculated for C80H110N12O19S7Zn 1833.6362; found 1833.6363 (mass accuracy 4.58 ppm). UV-Vis (DMSO) λmax nm (log ε) 371.5 (4.86) and 705.5 (4.93).

Synthesis of 2-(N-(3-azidopropyl)-(3-thiopropylamide)-9,10,16,17,23,24-(1-mercapto-4,7,10-trioxaundecane) Zn(II) phthalocyanine (8). N-(3-azidopropyl)-3-(3,4-dicyanophenylthio) propane-4,4-dimethyl-1-phenylphthalonitrile 2 (450 mg, 1.01 mmol) was dissolved in anhydrous dimethylformamide (2 mL) under argon atmosphere and stirred for 3 h. Thereafter, the reaction was cooled down. Then ZnOAc2 (150 mg, 0.80 mmol) was added and the solution was refluxed for further 1 h at 120°C, then the mixture was cooled down. After cooling the reaction mixture was filtered and the residue was washed with ethyl acetate. The green precipitate was filtered and washed with ethanol yielding yellowish solid (280 mg, 68%). FT-IR (cm–1) 3230 (NH3), 3093 (ArH), 2929-2850 (CH3), 2250 (CN), 2083 (N=), 1631 (CO), 1477 (CN). 1H NMR (500 MHz, CDCl3, δ ppm): 1.75 (p, 2H, CH2), 2.02 (t, 2H, N-CH2), 3.30 (m, 6H, SCH2, CH2N3), 5.9 (s, N=), 7.51 (d, 1H, ArCH), 7.53 (s, CH2), 7.6 (d, 1H, ArH). 13C NMR (125 MHz, CDCl3, δ ppm): 29.46 (CH2), 33.23 (CH3), 33.59 (CH3), 33.75 (CH3), 35.11 (CH2), 35.45 (CH2), 36.45 (CH2), 48.98, 58C (CH2), 59.04 (OCH2), 69.51 (CH2), 69.69 (CH2), 70.25 (CH2), 70.43 (CH2), 70.51 (CH2), 71.79 (CH2). MS (EI) m/z 135.47 (Ar), 135.66 (Ar), 136.17 (Ar), 137.76 (Ar), 138.45 (Ar), 139.17 (Ar), 152.90 (Ar), 170.06 (CO). HRMS (MALDI-TOF) m/z [M+H]+ calculated for C80H110N12O19S7Zn 1833.6362; found 1833.6363 (mass accuracy 4.58 ppm). UV-Vis (DMSO) λmax nm (log ε) 371.5 (4.86) and 705.5 (4.93).
X-ray data collection and structure refinement. Unit cell measurements and intensity data collection were performed on an Bruker APEX II QUAZAR three-circle diffractometer using monochromatized Mo Kα X-ray (λ=0.71073 A) using φ and ω technique. Indexing was performed using APEX2 (46). Data integration and reduction were carried out with SAINT V8.27B (47). Absorption correction was performed by multiscan method implemented in SADAB S2012/1 (48). The structure was solved using the direct methods procedure in SHELX-97 (49) and then refined by full-matrix least-squares refinements on F2 using the SHELXL-97. All non-hydrogen atoms were refined anisotropically using all reflections with F > 2σ(F). C-bound H-atoms were positioned geometrically and refined using a riding mode. The N-bound H atom was located from the difference Fourier map and restrained to be 0.89 A from N atom using DFIX and its position was constrained to refine on its parent N atom with Uiso(H) = 1.2 Ueq(N). Crystallographic data and refinement details of the data collection for 4 are given in Table S1. The final geometrical calculations and the molecular drawings were carried out with Platon v1.16 (50) and Mercury CSD 3.1 program (51).

EPR measurements. The solution EPR spectrum was recorded in solution (chloroform) with a Jeol JES FA 300 X-band spectrometer (8.96 GHz) with about 1mW microwave power and 100 kHz magnetic field modulation, at room temperature.

Photophysics and photochemistry. Instrumentation. Absorption spectra in the UV-Visible region were recorded with a Shimadzu 2001 UV spectrophotometer. Fluorescence excitation and emission spectra were recorded on a Varian Eclipse spectrofluorometer using 1 cm path-length cuvettes at room temperature. Photo-irradiations were done using a General Electric quartz line lamp (300W). A 600 nm glass cut off filter (Schott) and a water filter (Intor, 700 nm with a bandwidth 40 nm) was additionally placed in the light path before the sample.

Light intensities were measured with a POWER MAX5100 (Mol-1378 Duygu Ayn Ayd-Tekdas et al.)width of 40 nm) was additionally placed in the light path before the sample. Light intensities were measured with a POWER MAX5100 (Mol-electron detector incorporated) power meter.

Fluorescence quantum yield determination. Fluorescence quantum yield (ΦF) was estimated by the comparative method (Eq. 1) (52,53) using unsubstituted Zn(II) phthalocyanine (ZnPc) as the reference. Reference value of ΦF is 0.18 in DMSO for ZnPc (54)

$$\Phi_F = \Phi_{F,Std} \times \frac{F \cdot A_{Std} \cdot n_2}{F_{Std} \cdot A \cdot n_{2,Std}} \tag{1}$$

where F and F_{Std} are the areas under the fluorescence emission curves of the sample and the standard, respectively. A and A_{Std} are the respective absorbances of the sample and standard at the excitation wavelengths. n_2 and n_{2,Std} are the refractive indices of solvents used for the sample and standard, respectively. The absorbance of the solutions at the excitation wavelength ranged between 0.1 and 0.02.

Singlet oxygen quantum yield determination. Singlet oxygen quantum yield (ΦD) was determined in air using the relative method (55) with ZnPc (in DMSO) or ZnPCmix (in aqueous media) as the reference. DPBF (1,3-diphenylisobenzofuran) and ADMA (anthracene-9,10-bis-methyl-phenate) were used as chemical quencher for singlet oxygen, respectively, in DMSO and aqueous media, using Eq. (2):

$$\Phi_D = \Phi_{D,Std} \times \frac{R \cdot F_{Std}}{R_{Std} \cdot I_{abs}} \tag{2}$$

where Φ_{D,Std} is the singlet oxygen quantum yield for the standard ZnPc (Φ_{D,Std} = 0.67 in DMSO) (54) and ZnPcmix (Φ_{D,Std} = 0.45 in aqueous media) (56) and R and R_{Std} are the DPBF photobleaching rates in the presence of the respective sample and standards, respectively. I_{abs} was determined and the rates of light absorption by the sample and standard were measured spectrometrically. To avoid chain reactions induced by the initial photo-oxidative product of the reaction between DPBF (or ADMA) and singlet oxygen (56), the concentration of quenchers (DPBF or ADMA) was lowered to ~3 × 10^{-5} M. Solutions of the photosensitizer containing DPBF (or ADMA) were prepared in the dark and irradiated in the Q-band region using the setup described in equipment part. DPBF degradation at 417 nm and ADMA degradation at 380 nm (in water) were monitored. The light intensity of 7.05 × 10^{15} photons s^{-1} cm^{-2} was used for ΦD determinations.

RESULTS AND DISCUSSION

Synthesis and characterizations

On a molecular design point of view, A3B substitution pattern of the phthalocyanine appeared to be the best, one isodindole subunit bearing the DOTA unit and the three other isodindole subunits bearing biocompatible water-solubilizing moieties. The design of such a conjugate and this choice of the A3B substitution pattern, in which one phthalocyanine core is coupled to one Gd-DOTA unit, takes into account the working concentrations in both thera-
peutic methods, which are both compatible in the micromolecular range (59).

Common drawbacks of phthalocyanines are the regioisomeric mixtures and their important aggregation tendency due to pi-stacking opportunity between two macrocycles, often enhanced in water. Polyethylene glycol substitution was proved to be a good substitution pattern for photosensitizing phthalocyanines (30,31). To avoid regioisomeric mixtures detrimental to further clinical tests, peripheral disubstitution pattern was selected, using thiol functionalized polyethylene glycol chains (30). If free-base phthalocyanines exhibit good fluorescence, better single oxygen generation is observed when the phthalocyanine is coordinated to a metal or a pseudo-metal such as Zn(II), Al(III), Ga(III), Si(IV). Zn metalation is the most common and was selected for these works. The resulting complex designed here is a bimetallic molecule, the Gd-DOTA for the MRI effect and the Zn metalation of the phthalocyanine for the photodynamic activity.

The choice of the Gd-DOTA unit coupled to a phthalocyanine was likely to satisfy all our requirements for good imaging results: fast water exchange, tenable rotational dynamics and limited internal motion. The efficiency of a contrast agent is expressed by their relaxivity r_1 and a much higher effectiveness, achievable by tuning its physico-chemical characteristics: the residence time of the water molecule(s) coordinated to the central GdIII ion (rM) and the rotational correlation time of the whole molecule (τR). In general, the clinically used contrast agents have too slow water exchange rate (long rM) and too fast molecular tumbling (short τR) due to their low-molecular-weight nature. As it is known that increasing the molecular size of MRI imaging agent enhances its overall molecular relaxivity, the conjugation to phthalocyanine, which is a molecule of elevated molecular weight, is expected to have a beneficial effect on the imaging properties.

On a synthetic strategy aspect, the Huisgen dipolar addition of click chemistry is a powerful synthetic tool successfully used in tetrapyrrolic functionalization (60) and was selected for the coupling of the DOTA moiety onto the phthalocyanine. To click the known alkynyl DOTA (known as Gd-595) (59), the azido-functionalized phthalocyanine 6 was designed.

A3B phthalocyanines are easily obtained by cyclotetramerization reactions applied to a statistical mixture of two phthalonitriles. The first synthetic strategy envisaged was the preparation of a monocarboxylated phthalocyanine on which introduce the azido function (Scheme 1), but the purification and separation of the desired A3B from the concomitantly formed symmetric derivative proved to be tedious. The alternative synthetic strategy adopted was the preparation of an azidophthalonitrile, used to obtain an A3B azidophthalocyanine, a suitable building block for click chemistry with any molecule bearing a terminal alkyne, and clicked hereafter onto alkynyl DOTA 7.

Azidophthalonitrile 4 is a key intermediate, prepared from phthalonitrile 2, amidified with 3-azidopropylamine (43) using SOCl$_2$ in a reasonable 68% yield, and that could be crystallized from ethanol at room temperature via slow evaporation. ORTEP representation with atomic numbering scheme is shown in Fig. S5. Compound 4 crystallizes in a triclinic space group ($P\bar{1}$). The N-H and C=O bonds in the amide functional group are anti to each other. The amido -NHCO- plane is nearly orthogonal to the phthalonitrile aromatic ring (C3-C8) with the value of dihedral angle of 76.74°. The C≡N bond distances of 1.142(3) Å and 1.143(3) Å are similar to values reported in the literature (61,62). The azido group is not linear with the value of N6-N5-N4 angle of 171.7(2)°.

A 9:1 ratio of starting materials has been calculated to lead to the formation of a mixture of only two derivatives: the symmetric A4 and the desired A3B phthalocyanine. This 9:1 ratio was applied to a mixture of starting materials (phthalonitriles 1 and 4) which underwent mixed cyclotetramerization in the presence of zinc acetate in dimethylaminoethanol, and led to the symmetric phthalocyanine 5 (identified accordingly to our previous reports (30) and the desired AABA phthalocyanine 6, separated by preparative thin layer chromatography. The absence of other derivatives (except traces of A2B2 isomers) together with the yield of 28% for the desired A3B phthalocyanine 6, is attributable to the excess of phthalonitrile 1 and is excellent for this kind of reaction (63,64). This key synthetic intermediate was characterized by 1H and 13C NMR as well as by MALDI-TOF at high resolution and IR spectroscopy. An intense peak at 2093 cm$^{-1}$ evidences the presence of the azide function (Fig. S6).

The phthalocyanine-DOTA conjugate 8 was obtained by click chemistry. Various conditions were tested for the click reaction. Heating azidophthalocyanine 5 in DMF with alkynyl GdDOTA, copper sulfate and sodium ascorbate appeared to be the most suitable conditions, leading to the desired conjugate 8 in rather high yield (45%). Purification was nevertheless laborious, due to the polarity of the conjugate inducing its sticking to silica gel during chromatographic purification. NMR spectroscopy is not suitable for paramagnetic compounds, which is the case of conjugate 8. Its structure was ascertained by FT-IR (Fig. S9) and MALDI spectroscopy at high resolution (Fig. 1). The experimental and theoretical isotopic patterns obtained for 8 in high-resolution conditions are fitting each other, confirming the structure of desired compound 8 (Fig. 1). The EPR spectrum of conjugate 8 in chloroform was recorded in the 0-8000 G range at room temperature (Fig. S11). The broad peak at about g ≈ 1.997 in the spectrum belongs to Gd$^{3+}$($S = 7/2$) ions, with a peak-to-peak linewidth, ΔH_{pp} ≅ 560 G. Since Gd$^{3+}$ ion is S-state paramagnetic ion, the orbital contribution becomes quenched, resulting in a long relaxation time. The other peaks are background signals from sample tube and cavity. Gd$^{3+}$ has a 4f4 electronic configuration and 4f^5S_{7/2} ground state. Due to zero orbital angular momentum, it is only the trivalent lanthanide whose EPR can be observed at room temperature. The relaxation mechanism of Gd$^{3+}$ complexes in solution is determined by zero field splitting (ZFS) which is caused by the exchange interactions between unpaired electron spins, giving rise to a very broad line. In addition, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. This technique detects specifically metals and the Gd-to-Zn ratio was estimated to be ca. 1, confirming that one Gd-DOTA unit is present per Zn phthalocyanine core (Fig. S12 and Table S2).

Photophysics and photochemistry

The photophysical and photochemical properties of the DOTA-phthalocyanine conjugate 8 were investigated and compared with those of the corresponding symmetrically substituted phthalocyanine 5, used as the analogous reference without DOTA unit (30). All the data commented below are summarized in Tables 1 and 2.
Photophysical properties. The electronic absorption spectrum of conjugate 8 was measured in DMSO, DMF, DCM and H2O (Fig. 2, top). One can notice that the solubility of the conjugate is wide ranged, from very polar solvents such as water, to much more hydrophobic dichloromethane. The presence of the DOTA on 8 significantly enhanced the water-solubility compared to reference symmetric phthalocyanine 5 (30) even if the conjugate is still aggregated as evidenced by the blue-shifted position and large shape of its Q band. This water-solubility is a positive aspect for further biological experiments. The fact that this was due to aggregation was confirmed by the addition of Triton X-100, a surfactant known to inhibit aggregation in aqueous media (65–67). Indeed, the sharpness of the Q band was restored upon its addition. As further photophysical and photochemical measurements need to be conducted on monomerized (nonaggregated) molecules, the aggregation behavior of 8 was studied in different solvents (Fig. 2, bottom).

Scheme 1. Multistep synthesis of conjugate 8.
The ground-state electronic absorption spectrum of 8 in DMSO shows characteristic absorption in the Q-band region. The spectrum of this molecule exhibits monomeric behavior evidenced by a single narrow Q band which is typical of nonaggregated metallated phthalocyanine complexes, and it was therefore decided to conduct the next photophysical and photochemical measurements in this solvent, as well as in water which is the closest to biological medium.

Fluorescence characterization of the conjugate 8 was performed. The fluorescence emission spectrum of 8 is a mirror image of the absorption spectra, which is itself similar to the excitation spectrum (Fig. 3). Fluorescence quantum yield (Φ_F) of phthalocyanine-DOTA conjugate 8 in DMSO is given in Table 3 and has been determined using reported calculation methods (68). This molecule does not fluoresce in water, most probably due to the aggregation described above.
As biological media are not simple water, and as we demonstrated in previous reports that phthalocyanines monomerize in the presence of biological membranes and other components (69), the fluorescence emission of conjugate 8 (observed in other solvents) is likely to be an additional useful tool for tumor visualization or photosensitizer distribution monitoring. As the sum of the quantum yields cannot exceed 1, the rather low fluorescence quantum yields can be correlated to the high singlet oxygen generation yield: the excited singlet state of compound 8 is converted into the triplet state rather than returning to its fundamental state by fluorescence emission.

Photochemical properties. The singlet oxygen quantum yield (Φ_A) is a crucial photochemical parameter in PDT as it quantifies the ability of a photosensitizer to generate singlet oxygen. Φ_A was determined by a comparative method based on the decomposition of DPBF in DMSO and ADMA in H2O. These molecules react instantaneously with singlet oxygen via a dipolar cycloaddition, and their absorption is quenched by this reaction. Therefore, the diminution of the absorption of DPBF in DMSO at 417 nm, and of ADMA in water at 380 nm, is directly proportional to the singlet oxygen generated upon irradiation (see measured spectrum examples in refs 9,31 and 65). The curves in DMSO and water are presented in Fig. 4, the results are summarized in Table 2.

Molecules which are not aggregated exhibit their maximum singlet oxygen generation capability, as it is the case of 8 in DMSO, in which its Φ_A value is 0.67. The presence of the Gd-DOTA moiety has no consequence on the singlet oxygen generation ability of the phthalocyanine core, which is in the same range than the reference compound 5 (30). Minimum values to be acknowledged as a suitable photosensitizer is above 0.5 (65), therefore the photodynamic ability of conjugate 8 is satisfying. Φ_A value in water for conjugate 8 is lower than that of in DMSO. This is due to the aggregation and to the quenching of singlet oxygen by water (65). Rather than concluding than this may prevent the use of conjugate 8 in intracellular media, one should keep in mind that cells are complex organization is likely to positively modify the aggregation state of the photosensitizer: we demonstrated that in the presence of membrane, phthalocyanine aggregated in pure water becomes monomerized and recover its photodynamic efficiency (69).

Degradation of the molecules under irradiation reflects their stability. Depending on targeted applications, different values are suitable. For photocatalysts, maximum photostability is required, when for biological photoapplications, intermediate photostability is preferred to limit risks of accumulative toxicity. Conjugate 8 and reference derivative 5 exhibited about similar stability with Φ_A of the order of 10^{-5} (Table 2), with no influence of the presence of the DOTA unit. Here, the Φ_A value found is about the same with zinc phthalocyanine derivatives that have been synthesized before (30). Conjugate 8 is in the appropriate range for biological applications in both DMSO and H2O.

Contrast imaging

The efficiency of clinically used contrast agents is expressed by their relaxivity r_1, mainly influenced by the residence time of the water molecule(s) coordinated to the central Gd(III) ion (T_{1M}) and the rotational correlation time of the whole molecule (τ_R) (70–72). In general, the clinically used contrast agents such as Omniscan® display slow water exchange rate (long T_{1M}) and fast molecular tumbling (short τ_R) due to their low-molecular-weight nature (73). The rotational time can be changed by increasing the molecular weight of whole molecule by conjugation of complex to a macromolecule (74–76). Meanwhile, conjugates with higher molecular weight could show much lower relaxivity than expected due to the local movements inducing a shortening of τ_R value. These local movements can be slowed down by rigidifying the spacer between the contrast agents and macromolecule (77–79). DOTA derivatives, where the amide oxygen atom forms a 6-membered chelate ring upon coordination of Gd(III), were found to have a mean water residency time, which is within the ideal range required for our purposes.

The longitudinal relaxation rate ($1/T_1$) of conjugate 8 was measured in water at various Gd³⁺ concentrations (0.05, 0.10, 0.20, 0.40, 0.80 and 1.60 mM) and is clearly concentration dependent, as can be observed on T_1-weighted MR images (Fig. 5) where the more prominent positive contrast is achieved for compound 8 the higher concentration.

T_1 relaxivity (r_1), was then determined from the slope of $1/T_1$ versus [Gd³⁺] plot (Fig. 6). r_1 values of compound 8 then calculated to be 1.43 mM⁻¹ s⁻¹ (Table 3). Conjugate 8 exhibited r_1 relaxivity that was compared to the values available for Gd-595 (7) and Omniscan® (Table 3), and exhibited close but weaker values, confirming that the conjugate 8 retains the contrast imaging property of the Gd-DOTA moiety. The weaker values may be attributed to the amide function on the spacer arm, likely to block the water-binding site.
In vitro compatibility assessments

In order to analyze biocompatibility, cell viability in the absence of light was investigated, to assess the relevance of the use of conjugate 8 as a theranostic agent: a photosensitizer should actually not be toxic at the working concentrations in the absence of light. Human breast adenocarcinoma cells (MCF-7) were treated with conjugate 8 in final concentrations of 1, 5, 10, 20 and 50 μM, 24 h after cell seeding (n = 4). After 24, 48 and 72 h of incubation, viability of cells was evaluated by Alamar blue assay. Nontreated cells were used as control group and the viability of treated cells are shown relative to nontreated cells in Fig. 7. At 24 h, conjugate 8 caused no adverse effects on viability of cells when used between 1–20 μM of concentration. However, treatment with 50 μM of conjugate 8 decreased cell viability to ~75%. Longer exposure times (48 and 72 h) induce an antiproliferative effect on MCF-7 cells for 20 μM of conjugate 8, which remains not toxic at 1–10 μM, these concentrations causing no significant effect on cell proliferation (Fig. 7).

The cell uptake of conjugate 8 by MCF-7 cells was investigated as well. Cells were seeded in 24-well plates at a density of 5 × 10^4 cells/well. After a 24 h incubation period, the cells were treated with 10 μM of conjugate 8 at 37°C for 24 h in a humidified incubator. The samples were analyzed with Zeiss LSM-510 confocal microscope with an oil-immersion 63× objective lens. An argon laser of 488 nm wavelength was used. The uptake of conjugate 8 is evidenced in Fig. 8. Further subcellular localization assays by colocalization with nuclear stains are being conducted to precisely assess the distribution of conjugate 8.

These preliminary data demonstrate the suitability of conjugate 8 for further biological investigations, currently ongoing.

CONCLUSION

A novel type of theranostic combining MRI contrast imaging and photodynamic properties has been designed and successfully synthesized. A phthalocyanine was selected for the photodynamic ability, in which a Gd-DOTA moiety was introduced to add MRI contrast imaging properties. The works presented here demonstrated the relevance of this design, as the conjugate retains the photophysical and photochemical properties of the phthalocyanine core: the singlet oxygen generation of the conjugate is in the same range as the reference without DOTA moiety. Even though the MRI contrast imaging ability of the conjugate is lowered compared to related commercial Gd complexes, the data obtained are suitable for imaging purposes. In vitro assays.
nuclei. Small spheres of arbitrary radii are drawn at the 50% probability level. H-atoms are shown as through the project 113R004 coupled to the COST Action TD1004.

Acknowledgements—The Scientific and Technological Research Council of Turkey (TUBITAK) is gratefully acknowledged for his funding of Turkey (TUBITAK) is gratefully acknowledged for his funding of Turkey (TUBITAK) is gratefully acknowledged for his funding.

REFERENCES

Additional Supporting Information may be found in the online version of this article:

Figure S1. FT-IR spectrum of compound 4.
Figure S2. 1H NMR spectrum of compound 4 (in CDCl3).
Figure S3. 13C NMR Spectrum of compound 4 (in CDCl3).
Figure S4. MS (ESI) spectrum of compound 4.
Figure S5. Molecular structure of 4. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
Figure S6. FT-IR spectrum of compound 6.
Figure S7. 1H NMR spectrum of compound 6 (DMF-d7).
Figure S8. 13C NMR spectra of compound 6.
Figure S9. High-resolution mass spectrum (MALDI-TOF) of compound 6. Top: full spectrum. The observed molecular ion are [M+H]+ and [M+H-2N-]. Bottom: superposition of the theoretical (red) and experimental (black) isotopic patterns.
Figure S10. FT-IR spectrum of compound 8.
Figure S11. EPR spectrum of 8 in solution (chloroform) at room temperature, recorded in the 0–8000 G range.
Figure S12. ICP-MS calibration curves for 66Zn and 157Gd nuclci.
Table S1. Crystal data and refinement parameters for 4.
Table S2. Gd(III) and Zn(II) concentrations acquired in ICP-MS experiment.

SUPPORTING INFORMATION

indicate an appropriate innocuousness of the conjugate at concentrations used for treatment. All these measurements together confirm the relevance of this new theranostic concept. Further biological investigations are in progress.

